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The separation of a coupled system of differential equations in
quantum mechanics

Cao xuan Chuant

Observatoire de Nice, BP 35, Nice, France
Received 30 October, in final form 9 March 1992

Absiract. We discuss various aspects of the methodoiogy of the separaiion operation of a
coupled system of differential equations in quantum mechanics, namely the Darboux’
transformation, the T and N matrices approach for the case of symmetric and non-
symmetric coupling of the equations. The analysis is also extended to systems with more
than two equations with, in each case, specific examples illustrating their implementation
in practical situations.

1. Theory

Consider the following coupled system of linear differential equations which, in matrix
form, can be written as

[PI+D]p=Ard (1}
where n is the number of equations, [ is the unit a X n mairix, ¢ ={¢,..., .}, P is
a linear differential operator and D a non-diagonal nxn matrix, D=(u, d;) i,j=
1,2,...,nand A a constant diagonal matrix A = (A,, ..., A,), d; # d; (non-symmetrical
coupling).

The separation operation of system (1) is a transformation N such that the original
base ¢ is transformed into a new one W= (¢, ¢, ..., ¢}

¥ =N¢ {2)
which verifies the separated equations in the system

[P+ Fly=Ay (3)
where F is now a » x n diagonal matrix F =(v,, v, ..., ,} with n unknown elements

v;. If these elements v, can be determined and if the separated equations can be solved,
then the original solutions ¢; can be recovered by an inverse transformation
-
é=N"'v. | (4)
The sepration operation is, however, not always possible unless some constraints

on the elements of D are imposed, and the study of these constraints constitutes an
interesting trend of research in mathematical physics.

with symmetric coupling and resonance condition (A, = A,), complete separation can
be obtained through the ‘T’ transformation approach if these elements are linked by
a simple relation (Cao 1981).

t Permanent address: 01 Parvis du Breuil, 92160 Antony, France.
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It was pointed out later (Humi Mayer 1985) that this constraint may eventually be
enlarged by use of another approach based on the Darboux’s transformation, a
prototype of the Lie-Backlund transformation (Lamb 1980) in which the operator P
must be of second order (P = d?/dx?), that is to say the matrix N may have the form

N=A(x)+ B(x)ﬁ. (5)

A(x):(ay), B(x):(b;) are the n X n non-diagonal matrices to be determined.

Initially, in attempting to apply it to some practical problems, we are led to a
number of observations and remarks which will be first analysed. From this study, a
number of new improvements and understanding of the methology can be extracted,
with more insight into the connection between the Darboux and the T approach. A
new type of transformatien, the N matrix, will next be introduced to solve the problem
of non-symmetrical couplings. Both the T and N approaches are governed by the
theorem of separation and are useful in quantum mechanics as can be seen in the
following examples. Finally we also show that their combination may provide a
convenient means to solve the probilem of three coupled equations.

1.1. The Darboux’s transformation
From {5), using P = d’/dx?, we may write
¥ =Ad+Bs'" (6)
Replacing this in {1} we can infer the two following matrix equations:
—A"-2AB'+2B'D+ BD'+ AD=FA
—-2A'+BD—-B"=FB @

where the matrices A(x) and B(x) are in principle arbitrary but we note that for
quantum mechanics, the most significant choices are the cases B(x)=1 and B(x)=0.

Case B(x}= 1. Forsimplicity we consider the case n =2 (two coupled equations) so that
a,; da,; i 0) (u, dl)
(an azz) (0 1 d;
v, 0 (Al 0)
F= A= .
(0 Uz) 0 ’\I

From the second equation in {7) we have
-aJ|2="%d1 ahy = —3d;.
Let ¢; =Ix d:(x)dxi=1,2 then, neglecting the constant of integration

i -1
a2 =730 ay = 7207

Combining these results with (7), it can be verified that the elements a; must simul-
taneously satisfy the following relations:

1 1
an=_la-ddith]  ap=_[-a—id— L] (8a)

where « is an arbitrary constant of integration.
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X
2 _1
a'“—a“=§J. ¢ ¢ dx —u, (8b)

It can be seen immediately that no simple solution can be reached in the general case
unless a first constraint d, = d, =d (symmetric coupling) is admitted that is to say

G=e=c L=L=1L

Writing now explicitly the four relations in (8), we have

1
ayy =z[‘1_%d+f}

| (9a)
‘122=E[_a "%d_l]
a:l —a%1=%cz_u1 (99)
aéz_ a§z=%02" Uj.

The compatibility between (92} and (9b) requires a second type of constraint which
can be formulated as follows: if the difference u, = u, is given a priori, then the sum
u; + u, must comply with the relation

1, d)' l(d)2 2 .
U=ty 2c (c 5\ % Czta I (10)

Note that if A, =A,=A (resonance condition), and replacing ¢ by 2¢, relation (10}

exactly agrees with the result first obtained by Mayer (1985). The elements v, v; of
the diagonal matrix F are
vy =u,+2aj;

{11)

Uy = Uy, +20a5;.

Hence, if the separated equations (3) can be solved, the original solution ¢ can be
recovered by an inverse transformation

¢=[AT'CI (¢ —AT'y)
C=A+D-A

provided that the matrices A and C are not singular everywhere. Therefore a third
kind of constraint must be imposed:

A(A)#0 A{C)#0 (12)
in which the symbol A corresponds to the determinant of the corresponding matrix.
Example 1. As an illustration of the above considerations, we choose the case previously
given in Mayer (1985}, in which

c=ax* uy — 1, = bx’ A=A=A (13)

o
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where k, | are parameters, a, b are arbitrary constants. If the constant of integration
a is set equal to zero, the expression for A(A) is

1 k2 - beZ(f+|) ]

Note that with increasing values of x the first term of the rHs is always decreasing

chila tha nd alwave This means that thara avite nt lonet oo
whiig¢ the Secona term 1s aiways ulblcaalu5 L1113 IHICally Lldl WUISIC TAILS dil 1E4d51 O1ie
{or more) roots r, such that A(A(#,)} =0 so that the constraint in (12) cannot be met
and this case seems not fit for the problem under consideration, even when separation
of the coupled equations is possible. These difficulties become dramatically transparent
when we extend the analysis to the case n> 2. For instance for n = 3, we find that the

determination of the elements a; must be subject to the compatibility requirements of

thrao Finde af diffarantial annatinne: twn are linsar hnt the third ic nanlinear (Disae?
il AINGS O GITICTONNIG CQUanitils, tWO alv ahital oWl uhd W0IG 15 LoTLINCal (Allatil s

type) excluding any attempt to extract simple analytic relation such as (10). However,
when a physical situation does not require the reconstruction operation, then the B= |
approach may become useful, but this constitutes a different topic beyond the scope
of the present paper and will be discussed later on. It was also pointed out in a

subsequent paper {Mayer 1987) that the transformation corresponding to B=1 is not
invertible except for the simnle cagse n=1 \

il Laso

Case B=0. In order to avoid these difficuities, the case B =0 is more promising not
only because of its relative simplcity but also because it is susceptible to generalization
with a broader range of utilization, In fact, from the second equation in {7), the matrix
A s now a constant matrix so that the transformatmn N is identical to A and is

AD=FA (15}

the constant matrix A must be non-singular, making possible the reconstruction
operation as well as normalization of the original functions ¢,. The dfficulty here lies
in the fact that with n =2 (resonance and symmetric coupling) there are in principle

civ nnlunawne { 2.) whila with {18) we have Ql ant dignncal anly fonr pnnﬂhnnc
Ok WIARIEU WY 113 \uu, CiJ O YILLIG YYALIL QL) YW iYW Uui GISPUSGL VILY 1Uul Lijudnaig.

Some constraints must therefore be set up among the elements of the matrix D; they
are precisely governed by the theorem of separation (Cao 1981); that is to say
(u; —u,)~'d = constant and the appropriate transformation N become identical to the
transformation T(a)

—a 1+a\

(1
_\—(1+a) l—a}

(161}
Vi)

with ‘
a:—27:|:\/1+4y2 7=(ﬂ|"az)_ld-

Note also that if this constraint cannot be fully satisfied, it is generally possible, using
the technique of the auxiliary parameters (Cao 1982, 1988), to seek for a partial
separation such that the problem to amenable to a perturbation treatment. Some details
on numerical aspects applied to quantum mechanics can be found in Bougouffa et af
(1988, 1989).

However, in the present work, we shall limit ourselves to the case of exact separation
in order to see how this can be extended to more general situations. One of the
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advantages of the T(a)} transformation method lies in the fact that the differential
operator P need not be limited to the second order; we may have for instance
m

P
Yt e

m:1,2.., a,, : constant
On the other hand T(a) can also be considered as representations of a Lie group
of dimensionality unity with generator

(3

and with the unit element corresponding te ¥ =0 (or a = =+1). Two successive transfor-
mations T(a,), T(a,) yield another transformation T(a) where

a1+a2 aa,+1
a.+a2+a1a2 i

Furthermore, we have found that it is in fact possible to go beyond the linear constraint
or the symmetric coupling case. As, to our knowledge, this extension of the theorem
of separation has not yet been clarified in current literature, we shall proceed with
some details in the discussion below.

1.2. The ‘differential constraint’

Let z =u, — u, and consider the symmetric coupling {d, =d.=4d) in (1). Assume that
d is retated to z by the constraint
d=z" z"
dx"
in which m, n, r are parameters. With the same method it can then be shown that
system (1) can also be completely separated if the quantity z is a selution of the
following equation:

in which g is now considered as a parameter. Obviously, this equation can be solved
analytically for specific values of the parameters m, n, r. For example if n=1, r=1,
the case m=—1 corresponds to a Ricatti, while m=-2, -3, ... corresponds to the

T P In vy nlon aviand tha Annciraimt ten tha fasm A — vl =" Lofed 21

Ber lj,Uulu cquauuua We midy 4180 €Xicnd the constraint to tne form a =A@NZ JT T ),
¢ and ¢ are arbitrary functions of z’ then (17) is reduced to the Lagrange or Clairault’s
type of equations.

Example, Returning to the case (13) it can be verified that if we take /=3, c=3bx*2,
m=2, n=1, r=1 the system (1) is completely separated with the parameter a given
by a=-b’xv1+b* The transformation T(a) is now invertible and the diagenal
elements of D are simply

u = Muy+u, F gla)(u, — uy)]

2
1+a®

2a

gla)=

I
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1.3. Non-symmetric coupling

We consider system (1) in which the matrix D has the form

u, d,
D= d
(d2 uz) 1 7= d; 17

and prove the following statement which, in a sense, is a mere extension of the theorem
of separation mentioned above.

Statement. The system of two coupled differential equations in (1) with the matrix D
givenin (17) can always be completely separated if simultaneously d,(Au)™" = constant;
d{Au)"" = constant; Au = u, —u,.

Proof. Using the following transformation;

1 X '
N{X,Y)=
(X, Y) (_Y ) ) (19)
where X, Y are unknowns for the moment, the new system is
{P+Flg= A (20)
v, 0)
F=- .
(& an
The elements X and Y are determined by two equations
d, X*—AuX —d,=0 d, Y ~AuY—-d,=0 (22)
so that
1 Au Au\® d, 1 Au (Au)2 d,
X=——zx+[|l—) += Y=x-—=\/[{ =] +—.
2 d, (Zdz) d, 2 d; 2d, d,
The elements v,, v, are then
o, =u,+d, Y Uy = Us— dr X. (23)

Remarks. (i) Inthe special case where P is a first-order differential operator { P = d/dx),
the above linear or differential constraints become redundant. In this case the quantities
X, Y are function of x and must be solutions of two nonlinear differential equations
of the Ricatti type.

(ii) It can be verified that in the case of symmetric coupling (d,=d;=d), X=Y
and the expressions for v, and v; are

v, =5(u, + uy) —JAuV1+4y°
(=3t ) =3 Y= (Au)"'d

vy =3(1, + w) +jAuV 1 +457

in which we may recognize the characteristic form of the results obtained with the
T(a) transformation that is to say in this case we have identity between (1—a)N and
T justifying therefore the consistency of its use X ={1+a)/(1—r).

(iii) For the antisymmetric coupling case (d = d, = —d,;), note that X, =—Y- and
these quantities may be real or imaginary according to Au = 2d.
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2. Applications

2.1. Examples

In order to see how this can be implemented, we shall consider two examples, the first
one may be seen as a pedagogical exercise and the second one does correspond to 2
real physical situation.

Case 1. Let the matrices 2 and A in (1) be defined by
U=u =i, dl=d2=_d A]‘-Ié/\z

We shall show that the solutions (¢,, ¢,) can always be expressed in terms of two
supersymmetric partners (i, ) corresponding to a superpotential v'. This can be
proved in two steps:

(i) Note first that we are in the case of symmetric coupling implying the use of
the T matrix approach. As u; = u,, we may take a =0 in T(a) and transform the base
¢ into ¢ where ¢ = T(0)¢p

[P+D]p=4¢ (24)
in which

5=f{#td 0 - (A A

Dz(uO u—d) AE(A A) Ar=2(AEAy). (25)

(ii) To unveil the supersymmetric character of relations (24}, (25) we use the o
transformation technique (Cao 1991) in going into a new base :

¢ =Cy C=c(x)I ¢ =, ).

The explicit form of the resulting equations is

d r
[_+u+£+d—/\+]¢f1 =A_yn,
dx c
d ¢’
[_——(u-{--——) +d+l\+]dl2= —A_yn.
dx ¢

As c(x) is arbitrary, we may now choose it as c(x} = K ¢ *""** K is a constant and
B(x)={" u(x) dx. The above system becomes

(27)

d
[a+d]‘;’1 =A_t,

(28)

d
[_a“' d:|¢’2= —A_t

in which we may recognize the supersymmetric character corresponding to the usual
‘ladder operator’ and superpotential, A* and v', where

A*=ii+ v v'=d
dx

while the components ¢,, . are solutions of the equations

d?
—-—+d2=Fd’+)l2]:ff =0 29
[ dx? : (29)
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and the original functions ¢, ¢, are related to ¢,, ¢ by
¢, =31K e BTy F ¥,).
2

Conditions for ‘good symmetry’ will in turn impose further choices of the functions
u(x), d(x).

Case 2. We take now a real physical situation concerning the Dirac equation with an
atiractive Coulomb potential discussed in Sukumar (1985), where the matrix D of
equation (2) of this reference should be

1{k -
D==
2(7 -k) G30)
and where
A___(O a]) al=m:I:E
a, 0 2

k is an eigenvalue of the operator —(e-L+1} and v, the strength of the Coulomb
interaction {(y = aZ;; a is a fine structure constant, Z is the charge number). We are
now in the presence of antisymmetric couplings which requires the use of the N(X, Y)
approach recalling that X, =~ Y. After some simple algebra and noting that X, =
—Y_=9y""k+s) in which we set s =vk?—y* and using new coordinates defined by
p = Ex the system (1) can be written explicitly as:

[Los 2]y, [k m],
Lap p s Ls EJ

31)
[__d_+£_1] - [E_m]
4 b i L2l Ry 2
An equivalent result can also be obtained if we use the special transformation
[k+s  —v\ ‘ (32)
M= .
( -y k+ s)
In fact, the relation between N(X, Y) and M is simply
t 01

Note that the quantity s may be real or imaginary depending on whether y> k or
v <k (for example low lying states of heavy hydrogen-like atoms Z >70). The ladder
operator A* and superpotential v’ are

armx iy i (34)
dx p s
Some physical aspects of this description have already been discussed in Sukumar
(1985) (see also Ui 1984),
It is perhaps worthwhile to mention that while the M transformation is a special
type pertaining to the case of the Dirac equation, the N(X, Y) transformation has a
more general range of use.
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Remark. 1t may also be enlarged when combined with the *C” construction technique
outlined in example 1. For instance, if we start from (31) and use the ‘(" transformation
to define a new base = (¢, )

o= Cy

the new system is

-
dx Uy |4 = a iy

4 (35)
- Lesi|i=a i
X
with the following notation
U;:——E:F v
7]
’ , (36)
a k m c
C=c(x)I o, =t —=y’
s E ¢

where I is the unit matrix. The function ¢{x) is still arbitrary and can be chosen
conveniently. For example if we take

1
e(x)= exp[—ﬁ mxz]
s0 that

! 1
—_~—me

oo

where m is mass, then the above system become physically meaningful (x=pE):

® For y=0 it can represent the case of a Dirac equation in which linearity of the
coordinate is assumed or, in other words, it can be associated (with some slight
modifications) to the problem of the ‘Dirac oscillator® discussed in Moshinsky (1989)
and Quesne (1991).

® 1 y 0, this system represents then a new situation in which are simultaneously
present the Coulomb and oscillator interaction. the presence of the oscillator interaction
destroys the symmetry so that the components ,, ¥, are no more SUSY partners
because the ‘ladder operators’

d d
Al =——+1] AT =—++ v}
ST Pdx
are not adjoint.
Nevertheless, the concept of supersymmetry can be retained in the following sense:
consider now two operators

d - d
Af=a+v; Aj =—a+v2
so that A” are adjoint. The SUSY partners (¢, ,, ¥.,) of (&,, 4,) are given by
A;lb_z = a+l§2,s AZ_J;LS = a—l;z

ATfi=ad,  Atd.—a.d. G7)
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Therefore, the concept of a superpotential according to Witten (1981) must now be
replaced by a ‘matrix superpotential’ (Amado et al 1988) w' defined by

,_{vv 0
wz(ll')) v’z)' G8)

The ‘charge operator’ is now a 4 X4 matrix

o=l 5) o)

AT 0 AT 0
(58 e )
(0 Aj 0 A,

as well as the Hamiltonian
HY 0 ATAT 0 ) (A,*A' 0
H= H = H*= ! )
( 0 H_) ( 0 AJAT 0 ATAS {39}
By construction we always have nilpotency (Q™)* =0 and it can be verified that
{Q",Q}=2H [Q*, H]=0

the notation [, ], {,} representing the commutator and anticommutator. This point of
view will be developed separately in a more general context.

with

3. Extension

3.1. System with more than two coupled equations

This is a system (1) in which the matrix Disnowa n x n matrix D= {(w;, d;} i, j=2,...,n
n>2, ¢=(¢,, ba,...,d,). Note first that literature pertaining to such a system used
to describe a given physical situaton remains scarce. In fact, complete separation is
generally not possible even when a set of linear constraints is assumed. However, a
number of interesting cases can be formulated by the two following statements, and
are useful for further work:

{a) Itisalways possible to transform the symmetric # X n matrix D into a triangular
matrix D such that the system (1) can be solved successively by a substitution method
if only a single linear constraint is assumed.

Proof. Let D be symmetric and n=3

u, d, d;
D=|¢ u d;|.
dz dj, Hy

Assume the linear constraint (¥, — u,) "'d, = v, = constant, d,, d,, ; may be any analytic
functions, A, = A, 7 Aa.
Consider the generalized T;(a,) transformation

T3(ﬂ|)=(T2£)al) (:) (40}
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Tx(a,) is given in (16) and a, = =27, + (1 +4})"/%. Repeating twice the transformation
T5(a,) on system (I) provides the following new system:
[P+D(2)]¢(2)=/\qb(2) (41)
in which ¢@'= (61", 5, ¢5”)
i d? (1/ADd5
DP=dy w? (1/87)d5”

@ a?
A, =2(1+aj) ui? =u,
u,” = 3u “’+u“’)¢l+a2(u‘” ui!) d? =d"(1-a) - d¥(1+a,)
2

(42)

= Yy + ) F iy — V1 +4y7 dP =dP(1+a,)+ds"(1-a,)
2

11—
d‘z’—51+ ((” ulh @' — ul?) = constant

and the linear constraint is always conserved. Repeating then the operation once more
with another appropriate parameter a; etc and after 2m such transformation, the
structure of the resulting D'*™ matrix is

uf™dP (1 8)d¢m
D™ = dgzm) ugzm) (I/A)dgzm) (43)
df"” d?"" s

where

A= ] A%

=

i
If the parameters a; are real, we have A; > 1 so that it will always be possible to choose
m such that A> 1 and neglect the quantities d*’A™", ™A ™" i.e. to disconnect the
subset (¢7™), 69™) from ¢5™. In this subset, the equations are still coupled but
from conservation of the linear constraint we may use a supplementary transformation
T»(a,, ;) to separate them and solve the resulting equations. The results will then be
substituted in the third equation to infer ¢3*™. Obviously, this method can be extended
to system of n> 3 equations by use of the chain of transformations T, T,,_,, ..., Ts.
It also completes the results presented in an earlier paper (Cao 1988).

Complete separation would require the more severe constraints

d; ..

— = constant izj*k (i,jk=1,...,n) (44)

Hy
and A; = A. This means that the matrix D can be written as D = f(x)A in which f(x)
may be any analytic function and A an n X n constant matrix. In principle, it can be
diagonalized by the conventional method of eigenvalues, which requires the solution
of an algebraic equation of nth order of the form

o
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For instance if n =3 and f(x) is proportional to x™7, the system (1) has been used to
analyse the |n, I)>|n, I+ 1) optical transition in the e — H collision according to the
Lane-Lin model (Lane and Lin 1964), which made use of a result originally obtained
by Seaton (1961) in which one of the coupling terms is neglected (d,=0) by physical
arguments.

As an extension, we find that the T and N transformations constitute an interesting
alternative apbroach with a notable advantage because it enables us to replace the nth

order algebraic equation by a set of n—1 second-order equations whlch are simpler
to handle. In order to illustrate this point, we consider again the case n=3, and
introduce the Ny{X, Y) matrix

1 0
Ni(X, Y)=
0= N m) )
Ny X, Y) already given in {19), and prove the following statement:

(b) Let I be symmetric satisfying (44); if only one of the following constraints is
assumed

dk - d
~——=g i~j#k

dtd a i#j# (46)
then system (1) can always be separated completely.

Proof. We shall proceed in two steps: _ _
(1) With the transformation T,(a) the matrix D become D(i,, d;)

i, 0 0
D=0 a, (1/A)d,
0 J3 U,y
where
A1=2(1+af) g=1Aa d, il %(ul'*'uz):':z(“n "1)V1+4'}’|-
!

(2) Noting that D is non-symmetric, we must apply the transformation N,(X, Y)
in which X and Y are solutions of two second-order equations similar to (22). The
resulting matrix D(v;) is now diagonal. We find

(47)

To summarize, we point out the following conclusions:

® The Darboux transformation in our problem must be carefully approached; the
case B(x)=1 may indeed lead to difficulties which are linked to the non-revertibility
character of the transformation; bringing more complications in the renormalization
of the original wavefunctions in quantum mechanics for example.
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® The case B =0 appears to be more appropriate for practical applications. The
case turns out to be identical to the T transformation method which itself orginates
from the theorem of separation, so that for a real parameter a, revertibility of this
transformation is always guarranteed.

® Extension of this theorem is indeed possible with the ‘differential constraint’ or
with the case of non-symmetric coupling which can be solved by use of the N(X, Y)
transformation.

® Finally, the combination of the T and N approaches enables an extension to
the n>2 case.

It is expected that these methods will become useful tools in the mathematical
construction of physical models involving many coupled states.

Acknowledgments

I thank B N Zakhariev (Dubna), F Cannata (Bologna) and V P Berezovoj (Kharkov)
for useful correspondence, and the referees of this journal for constructive comments.

References

Amado R D, Cannata F and Delonder J P 1988 Phys. Rev. Lett, 61 2901; Phys. Rev. A 38 3797
Bougouffa § and Cao x C 1988 J. Physique CI no 3 49 251

1989 J. Physique CI no 1 50 119

Cao x C 1981 L. Phys. A: Math. Gen, 14 1069

1982 J. Phys. A; Math. Gen. 15 2727

— 1988 J. Phys. A: Math. Gen. 21 617

~— 1991 J. Phys. A: Math. Gen. 24 L1155-65

Lamb J L Jr 1980 Elements of Soliton Theory (New York: Wiley) p 243
Mayer H 1985 J. Phys. A: Math. Gen. 18 1085

— 1988 J Phys. A: Math. Gen. 21 2075

Lane N F and Lin C C 1964 Phys. Rev. A 133 947

Moshinsky M and Szczepaniak A 1989 J. Phys. A: Marh, Gen. 22 1.317
Quesne C 1991 Int. J. Mod. Phys. A 6 1567

Seaton M J 1955 Proc. Phys. Soc. 68 457

— 1961 Proc. Phys. Soc. 77 174

Sukumar C V 1985 J. Phys. A; Math. Gen. 18 L697

Ui H 1984 Prog. Theor. Phys. 72 192, 813

Witten E 1981 Nuc. Phys. B 185 573

-



