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The separation of a coupled system of differential equations in 
quantum mechanics 

Cao xuan Chuant 
ObseNatoire d e  Nice, BP 35, Nice, France 

Received 30 October. in final farm 9 March 1992 

Abstrsci. We discuss various aspecrs oi the methodaiogy of the separation operation o f a  
coupled system of differential equations in quantum mechanics, namely the Darbaux’ 
transformation. the T and N matrices approach for the case of symmetric and non- 
symmetric coupling of the equations. The analysis is also extended to systems with more 
than two equations with, in each case, specific examples illustrating their implementation 
in practical situations. 

1. Theory 

Consider the following coupled system of linear differential equations which, in matrix 
form, can be written as 

[PI + D ] +  = A +  (1) 

where n is the number of equaiions, i is the unii n x n mairix, + = ( + I , .  . . ,+“ j, P is 
a linear differential operator and D a non-diagonal n x n matrix, D = (e, d,,) i, j = 
1,2,. . . , n and A a constant diagonal matrix A = ( A , ,  . . . , A,,,), d,j # 4j (non-symmetrical 
coupling). 

The separation operation of system ( I )  is a transformation N such that the original 
base + is transformed into a new one $=  ($,, $>.. . . , &) 

*=N@ (2) 

[ P +  F ] $ = h J ,  (3) 

which verifies the separated equations in the system 

where F is now a n x n diagonal matrix F = ( u l ,  u 2 , .  . . , u.) with n unknown elements 
ui. If these elements vi can be determined and if the separated equations can be solved, 
then the original soiutions +j  can be recovered by  an inverse transiormation 

+ = N - ’ $ .  (4) 
The sepration operation is, however, not always possible unless some constraints 

on the elements of D are imposed, and the study of these constraints constitutes an 
interesting trend of research in mathematical physics. 

!! has .!ready been shown that, in the case of a system of two coupled equations 
with symmetric coupling and resonance condition ( A ,  = A2) ,  complete separation can 
be obtained through the ‘T’ transformation approach if these elements are linked by 
a simple relation (Cao 1981). 

t Permanent address: 01 Parvis du Breuil, 92160 Antony. France. 
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It was pointed out later (Humi Mayer 1985) that this constraint may eventually be 
enlarged by use of another approach based on the Darboux's transfonnation, a 
prototype of the Lie-Backlund transformation (Lamb 1980) in which the operator P 
must be of second order ( P  = d2/dx2), that is to say the matrix N may have the form 

d 
dx 

N = A(x)+ B(x) -. 

A(x):(a,), B(x):(b,) are the n x n non-diagonal matrices to be determined. 
Initially, in attempting to apply it to some practical problems, we are led to a 

number of observations and remarks which will be first analysed. From this study, a 
numbcr of new improvements and understanding of the methology can be extracted, 
with more insight intn the connection between the Darboux and the T approach. A 
new type of transformation, the N matrix, will next be introduced to solve the problem 
of non-symmetrid couplings. Both the T and N approaches are govemed by the 
theorem of separation and are useful in quantum mechanics as can be seen in the 
following examples. Finally we also show that their combination may provide a 
convenient means to sdve  the problem of three coupled equations. 

1.1. n e  Darboux's transformation 

From (9, us@ P=d2/dx2,  we may write 

* = Aq5 +M'. ( 6 )  

Replacing this in (1) we can infer the two following matrix equations: 

- A" - 2hB' + 2B'D + B D  i AD = FA 

-2A'+ BD - B"= FB 
(7) 

where the matrices A(x) and B(x) are in principle arbitrary but we note that for 
quantum mechanics, the most significant choices are the cases B(x) = 1 and B(x) = 0. 

CaseB(x)= 1. For simplicity we consider the case n = 2 (two coupled equations) so that 

From the second equation in (7) we have 
--Id a; ,  = -I 2 4 .  

12- 2 I 

Let cj =I" dj(x) dx i = 1,2  then, neglecting the constant of integration 
- - - - L c  

Combining these results with (7), it can be verified that the elements a;; must simul- 
taneously satisfy the following relations: 

1 1 
C C 

where (I is an arbitrary constant of integration. 

21 - 2 2,  a - - - I c  
12- 2 I 

(80) a22 =- [-a -id2- 121 a l l  = - [ a  -idl + I , ]  
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(86) a' I I  l I  -; - _  1' c,c: dx-u ,  

a' - a 2  22-:  -~ f x c 2 c ; d x - u 2 .  
J 

It can be seen immediately that no simple solution can be reached in the general case 
unless a first constraint d ,  = d2 = d (symmetric coupling) is admitted that is to say 

C I  = c2= c I ,  = Iz = 1. 

Writing now explicitly the four relations in ( S ) ,  we have 

1 
a , ,  =-[a - f d  + I ]  

C 

a - - [ - a - L d  1 
22 - 2 -11 

C 

.I _ a 2  - ?  2 
I ,  l l -4c -U1 

a 2 2 - a 2 2 = z c  - u 2 .  
I 2 I 2  (9b) 

The compatibility between (sa)  and (96) requires a second type of constraint which 
can be formulated as follows: if the difference U ,  = u2 is given a priori, then the sum 
uI + u2 must comply with the relation 

Note that if A , = A 2 = h  (resonance condition), and replacing c by Zc, relation (10) 
exactly agrees with the result first obtained by Mayer (1985). The elements U,, U, of 
the diagonal matrix F are 

U, = u , + 2 a ; ,  

uz = u2 +2a;, .  
(11) 

Hence, if the separated equations (3) can be solved, the original solution $ can be 
recovered by an inverse transformation 

q5 = [A-'C]- ' (+ -A- '+ ' )  

C =A'+ D - A 

provided that the matrices A and C are not singular everywhere. Therefore a third 
kind of constraint must be imposed: 

A(A) # 0 A(C)#O (12) 
in which the symbol A corresponds to the determinant of the corresponding matrix. 

Example 1.  As an illustration of the above considerations, we choose the case previously 
given in Mayer (1985), in which 

A , = A 2 = A  (13) c = a x  I u2- U, = bx k 
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where k, I are parameters, a, b are arbitrary constants. If the constant of integration 
a is set equal to zero, the expression for A(A) is 

Note that with increasing values of x the first term of the RHS is always decreasing 

(or more) roots ro such that A(A(r,,)) = O  so that the constraint in (12) cannot be met 
and this case seems not fit for the problem under consideration, even when separation 
of the coupled equations is possible. These difficulties become dramatically transparent 
when we extend the analysis to the case n > 2. For instance for n = 3, we find that the 
determination of the elements a,, must be subject to the compatibility requirements of 

type) excluding any attempt to extract simple analytic relation such as (IO). However, 
when a physical situation does not require the reconstruction operation, then the B = I 
approach may become useful, but this constitutes a different topic beyond the scope 
of the present paper and will be discussed later on. It was also pointed out in a 
subsequent paper (Mayer 1987) that the transformation corresponding to B = 1 is not 

... L:la +Lo rann..rl . ..,-..e .-"- _-o._n Th:r th-. +La-- n..:+e -t I ---. .-. 
W.2l.L 111s D C C Y l l U  ,Cl.., :s a!-..J. ;,,*L&,,6. I... 0 I I IcaIIa  Lila, L L I S L C  CA,,> 0 ,  ,Lidbl ",,e 

three I;i-&. af &fferentia! eqna!ic-s; !"a are !inear but the third is noE!ixear (picat:i's 

in.ert.ib1.e except for the simp!e czse n = 1 ) 

Case B = 0. In order to avoid these difficulties, the case B = 0 is more promising not 
only because of its relative simplcity but also because it is susceptible to generalization 
with a broader range of utilization. In fact, from the second equation in (7). the matrix 
A is now a constant matrix so that the transformation N is identical to A and is 
dP!P"ned by 

A D = F A  (15) 

the constant matrix A must be non-singular, making possible the reconstruction 
operation as well as normalization of the original functions $,. The dfficulty here lies 
in the fact that with n = 2 (resonance and symmetric coupling) there are in principle 

Some constraints must therefore be set up  among the elements of the matrix D ;  they 
are precisely governed by the theorem of separation (Cao 1981); that is to say 
(U, - u J ' d  =constant and the appropriate transformation N become identical to the 
transformation T ( R )  

six uxl-,-o~,ns {cq ,  a,) (15) ;ve have at dispcsa! feur equltinns. 

with 

R = - 2 y * m  y = ( a , - R , ) - ' d .  

Note also that if this constraint cannot be fully satisfied, it is generally possible, using 
the technique of the auxiiiary parameters (Cao i98.2, is@),  to seek for a pariiai 
separation such that the problem to amenable to a perturbation treatment. Some details 
on numerical aspects applied to quantum mechanics can be found in Bougouffa et a1 
(1988,1989). 

However, in the present work, we shall limit ourselves to the case of exact separation 
in order to see how this can be extended to more general situations. One of the 
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advantages of the T ( a )  transformation method lies in the fact that the differential 
operator P need not be limited to the second order; we may have for instance 

I 

d" 
dx"' 

P = x a , -  m :  1 , 2 . .  , a, : constant 

On the other hand T ( a )  can also be considered as representations of a Lie group 
of dimensionality unity with generator 

0 1  
I ]= (  - 1  0 ) 

and with the unit element corresponding to  y = O  (or a = i l ) .  Two successive transfor- 
mations T ( a , ) ,  T (a , )  yield another transformation T ( a )  where 

a ,  + a2-  a l a 2 +  1 
a , + a , + a , a , -  1 

a =  

Furthermore, we have found that it is in fact possible to go beyond the linear constraint 
or the symmetric coupling case. As, to our knowledge, this extension of the theorem 
of separation has not yet been clarified in current literature, we shall proceed with 
some detaiis in the discussion beiow. 

1.2. The 'differential constraint' 

Let z = U, - u2 and consider the symmetric coupling ( d ,  = d2 = d )  in ( 1 ) .  Assume that 
d is related to z by the constraint 

in which m, n, r are parameters. With the same method it can then be shown that 
system ( 1 )  can also be completely separated if the quantity z is a solution of the 
following equation: 

1-a' 
z , " y ( z ' ) - -  z = o  

d" 
dx 4a 

in which a is now considered as a parameter. Obviously, this equation can be solved 
analytically for specific values of the parameters m, n, r. For example if n = 1, r = 1 ,  
the case m = - 1  corresponds to a Ricatti, while m = -2, - 3 , .  . . corresponds to the 
DClllU"',, cqua,u,13. " Y G  "1LLJ 'UDU CALLillY L 1 1 S  CUllJLLLLlll, L U  L11G L U L l l l  U - r ry \ r  , I y , z  ,, 
'p and I) are arbitrary functions of z' then (17) is reduced to the Lagrange or Clairault's 
type of equations. 

Example. Returning to the case (13) it can be verified that if we take I = $ ,  c=fb '~ ' ' ~ ,  
m = 2 ,  n = 1 ,  r = 1 the system (1) is completely separated with the parameter (I given 
by a = - b 2 * m ,  The transformation T ( a )  is now invertible and the diagonal 
elements of D are simply 

n 7,: -.:--" 1.7- _I.. ^ I ^ ^  --.....A *La -,.""*-":... *^ .La&-,.-.,. A - .-,"[-,,A .,.I-', 



3754 Cao xuan Chuan 

1.3. Non-symmetric coupling 

We consider system (1) in which the matrix D has the form 

D = ( "  "') d l # d 2  
d2 u2 

and prove the following statement which, in a sense, is a mere extension of the theorem 
of separation mentioned above. 

Sfatement. The system of two coupled differential equations in (1) with the matrix D 
given in (17) can always be completely separated if simultaneously d,(Au)-'  = constant; 
d,(Au)-' =constant; Au = U, - u2.  

Proof: Using the following transformation: 

JI = N(X, YM $ = ($1 1 $ 2 )  

where X ,  Y are unknowns for the moment, the new system is 

[ P + F ] + = h +  

The elements X and Y are determined by two equations 

d2XZ- AuX - d ,  = 0 d ,  Y 2 - A u Y  - d , = O  (22) 
so that 

The elements U,, v2 are then 

U,= u , + d , Y  uZ= U I - ~ Z X .  

Remarks. (i) In the special case where P i s  a first-order differential operator (P = d/dx), 
the above linear or differential constraints become redundant. In this case the quantities 
X, Y are function of x and must be solutions of two nonlinear differential equations 
of the Ricatti type. 

(ii) It can be verified that in the case of symmetric coupling ( d ,  = d ,  = d ) ,  X = Y 
and the expressions for v ,  and U, are 

I -1 - 2 ( u , +  u2) - i A u m  
y = (Au) - 'd  

u2 = f (  U ,  + u2) + i A u m  

in which we may recognize the characteristic form of the results obtained with the 
T ( a )  transformation that is to say in this case we have identity between (1  - a ) N  and 
T justifying therefore the consistency of its use X = (1 + a ) / ( l -  r ) .  

(iii) For the antisymmetric coupling case ( d  = d ,  = -d2 ) ,  note that X ,  = - U ,  and 
these quantities may be real or  imaginary according to Au 2 2d. 
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2.  Applications 

2.1. Examples 

In order to see how this can be implemented, we shall consider two examples, the first 
one may be seen as a pedagogical exercise and the second one does correspond to a 
real physical situation. 

Case 1. Let the matrices D and A in (1) be defined by 

U = UI = u2 d ,  = d 2 =  -d A I  # A 2  

We shall show that the solutions ($,, $J can always be expressed in terms of two 
supersymmetric partners ($,, + 2 )  corresponding to a superpotential U ’ .  This can be 
proved in two steps: 

(i) Note first that we are in the case of symmetric coupling implying the use of 
the T matrix approach. As ut = u 2 ,  we may take a = 0 in T ( a )  and transform the base 
$ into 6 where &= T(O)$ 

[ P + D ] &  = ,i& (24) 

in which 

(ii) To unveil the supersymmetric character of relations (24), (25) we use the ‘e’ 
transformation technique (Cao 1991) in going into a new base +: 

$=e* i . = c ( x ) I  @ = (*I 3 * 2 ) .  

The explicit form of the resulting equations is 

As c ( x )  is arbitrary, we may now choose it as c(x)  = K e-B(xlt**r K is a constant and 
B ( x )  =I” u(x) dx. The above system becomes 

in which we may recognize the supersymmetric character corresponding to the usual 
‘ladder operator’ and superpotential, A* and U’, where 

u ’ = d  d 
d x  

A’= f-+ U’ 

while the components +, , +2 are solutions of the equations 
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and the original functions 4,. +2 are related to  ), , )2 by 

[ I l t F J 1 2 1 .  
4 = L , q  e-B(xJ+A+x 

1 2  
2 

Conditions for 'good symmetry' will in turn impose further choices of the functions 
d x ) ,  d ( x ) .  

Case 2. We take now a reai physicai situation concerning the Dirac equation with an 
attractive Coulomb potential discussed in Sukumar (1985), where the matrix D of 
equation ( 2 )  of this reference should be 

and where 

k is an eigenvalue of the operator - ( a . L + l )  and y, the strength of the Coulomb 
interaction ( y  = uZ, ; u is a fine structure constant, Z is the charge number). We are 
now in the presence of antisymmetric couplings which requires the use of the N(X, Y) 
approach recalling that X ,  = - YT. After some simple algebra and noting that X ,  = 
-Y_ = y - ' ( k + s )  in which we set s =- and using new coordinates defined by 
p = Ex the system (1) can he written explicitly as: 

An equivalent result can also be obtained if we use the special transformation 

In fact, the relation between N ( X ,  Y) and M is simply 

1 0 1  

Y 
N = - - M u ,  (33) 

Note that the quantity s may be real or imaginary depending on whether y >  k or 
y <  k (for example low lying states of heavy hydrogen-like atoms Z > 70). The ladder 
operator A" and superpotential U' are 

d S Y  

d x  P S  
A+=*-+U' (34) 

Some physical aspects of this description have already been discussed in Sukumar 
(1985) (see also Ui 1984). 

It is perhaps worthwhile to mention that while the M transformation is a special 
type pertaining to the case of the Dirac equation, the N ( X ,  Y) transformation has a 
more general range of use. 
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Remark. I t  may also be enlarged when combined with the ‘2’ construction technique 
outlined in example 1. For instance, if we start from (31) and use the ‘C’  transformation 
to define a new base 4 = (&, &) 

&=e* 
the new system is 

[&+U:]. = a+& 

[ -$+ 4 6, = 01 -5;? 

with the following notation 

(35) 

where I is the unit matrix. The function c(x) is still arbitrary and can be chosen 
conveniently. For example if we take 

so that 

where m is mass, then the above system become physically meaningful (x = PE) :  

0 For y = 0 it can represent the case of a Dirac equation in which linearity of the 
coordinate is assumed or, in other words, it can be associated (with some slight 
modifications) to the problem of the ‘Dirac oscillator’ discussed in Moshinsky (1989) 
and Quesne (1991). 

If y # 0, this system represents then a new situation in which are simultaneously 
present the Coulomb and oscillator interaction. the presence ofthe oscillator interaction 
destroys the symmetry so that the components 6, , I,& are no more SUSY partners 
because the ‘ladder operators’ 

d 
A; =-+ U; 

d 
d r  d x  

A; = --+U: 

are not adjoint. 

consider now two operators 
Nevertheless, the concept of supersymmetry can be retained in the following sense: 

d 
d x  d x  

A; = --+U; 
d 

A: =-+ U: 
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Therefore, the concept of a superpotential according to Witten (1981) must now be 
replaced by a 'matrix superpotential' (Amado et a1 1988) w' defined by 

w'=(; us,), 
The 'charge operator' is now a 4 X 4 matrix 

with 

as well as the Hamiltonian 

By construction we always have nilpotency ( Q*)2 = 0 and it can be verified that 

{Q' ,Q-}=2H [Q', HI = 0 

the notation [ ,I ,  {,} representing the commutator and anticommutator. This point of 
view will be developed separately in a more general context. 

3. Extension 

3.1. System with more than two coupled equations 

This is a system (1) in which the matrix D is now a n x n matrix D = (ui, d v )  i, j = 2, . . . , n 
n > 2, q5 = + 2 r  . . . , +,,). Note first that literature pertaining to such a system used 
to describe a given physical situaton remains scarce. In fact, complete separation is 
generally not possible even when a set of linear constraints is assumed. However, a 
number of interesting cases can be formulated by the two following statements, and 
are useful for further work: 

( a )  It is always possible to transform the symmetric n x n matrix Dinto a triangular 
matrix D such that the system (1) can be solved successively by a substitution method 
if only a single linear constraint is assumed. 

Roo$ Let D be symmetric and n = 3 

D =  ( u l  cI :: 2). 
4 4 u3 

Assume the linear constraint (U, - u,) - 'd ,  = yI = constant, d 2 ,  d , ,  u3 may be any analytic 
functions, A I = A2 # A,. 

Consider the generalized T3( a , )  transformation 
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T 2 ( a , )  is given in (16) and a ,  = -27,  i( 1 f47:) '".  Repeating twice the transformation 
T J a , )  on system ( I )  provides the following new system: 

[P+D'2 ' ]+ (2 '=  A+(') (41) 
in which + ( 2 )  = (4") 1 3  ,$(2) 2 ,  +y))  

~ ( 1 2 )  d\2' ( l / A : ) d y '  

A ,  = 2 ( l + a : )  U?) = U) 

and the linear constraint is always conserved. Repeating then the operation once more 
with another appropriate parameter a, etc and after 2m such transformation, the 
structure of the resulting D"" matrix is 

(43)  

where 

If the parameters a, are real, we have A, > 1 so that it will always be possible to choose 
m such that A > > ]  and neglect the quantities di2"'A-', dym'A- '  i.e. to disconnect the 
subset + y m ) )  from +i2'"). In this subset, the equations are still coupled but 
from conservation of the linear constraint we may use a supplementary transformation 
T 2 ( a m + l )  to separate them and solve the resulting equations. The results will then be 
substituted in the third equation to infer +\'"'. Obviously, this method can be extended 
to system of n > 3 equations by use of the chain of transformations T , ,  T m - l ,  , . . , T2. 
It also completes the results presented in an earlier paper (Cao 1988). 

Complete separation would require the more severe constraints 

A= constant i # j # k  ( i , j , k = l ,  ..., n )  (44) 
uk 

and A, = A. This means that the matrix D can be written as D = f ( x ) A  in which f ( x )  
may be any analytic function and A an n X n constant matrix. In principle, it can be 
diagonalized by the conventional method of eigenvalues, which requires the solution 
of an algebraic equation of nth order of the form 

1 a,x' = 0. 
i = ,  
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For instance if n = 3 and f ( x )  is proportional to x-,, the system ( I )  has been used to 
analyse the In, [)+In, 111) optical transition in the e -H  collision according to the 
Lane-Lin model (Lane and Lin 1964), which made use of a result originally obtained 
by Seaton (1961) in which one of the coupling terms is neglected ( d , = O )  by physical 
arguments. 

As an extension, we find that the T and N transformations constitute an interesting 

order algebraic equation by a set of n - 1 second-order equations which are simpler 
to handle. In order to illustrate this point, we consider again the case n = 3, and 
introduce the N,(X,  Y) matrix 

a!terna!ive approach Wi!h a no!ab!e advantage because i! enab!es us to rep!zce the nth 

N,(X, Y) already given in (19), and prove the following statement: 

assumed 
(b) Let D be symmetric satisfying (44); if only one of the following constraints is 

d,-d, - i # j # k  
dk + d, = ai  

then system (1) can always be separated completely. 

Proof: We shall proceed in two steps: 
(1) With the transformation T 3 ( n )  the matrix D become D(li,, 4.) 

where 

(2) Noting that D is non-symmetric, we must apply the transformation N 3 ( X ,  Y )  
in which X and Y are solutions of two second-order equations similar to (22). The 
resulting matrix @U,) is now diagonal. We find 

U, = li, 

U, = li,- Z3b  

V,= ti,+ &b 
(47) 

r)=trrr +...-'.. +is, 
A.- LL-, " 2  - -1 - , - ,  , I I , '  

To summarize, we point out the following conclusions: 
The Darboux transformation in our problem must be carefully approached; the 

case B ( x )  = 1 may indeed lead to difficulties which are linked to the non-revertibility 
character of the transformation; bringing more complications in the renormalization 
of the original wavefunctions in quantum mechanics for example. 
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The case B = 0 appears to he more appropriate for practical applications. The 
case turns out to he identical to the T transformation method which itself orginates 
from the theorem of separation, so that for a real parameter a, revertihility of this 
transformation is always guarranteed. 

Extension of this theorem is indeed possible with the ‘differential constraint’ or 
with the case of non-symmetric coupling which can be solved by use of the N(X, Y )  
transformation. 

Finally, the combination of the T and N approaches enables an extension to 
the n > 2 case. 

It is expected that these methods will become useful tools in the mathematical 
construction of physical models involving many coupled states. 
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